Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Sci Rep ; 13(1): 7717, 2023 05 12.
Article in English | MEDLINE | ID: covidwho-2316890

ABSTRACT

A growing number of patients with SARS-CoV-2 infections experience long-lasting symptoms. Even patients who suffered from a mild acute infection show a variety of persisting and debilitating neurocognitive, respiratory, or cardiac symptoms (Long-Covid syndrome), consequently leading to limitations in everyday life. Because data on health-related quality of life (HRQoL) is scarce, we aimed to characterize the impact of Long-Covid symptoms after a mild or moderate acute infection on HRQoL. In this observational study, outpatients seeking counseling in the interdisciplinary Post-Covid consultation of the University Hospital Zurich with symptoms persisting for more than 4 weeks were included. Patients who received an alternative diagnosis or suffered from a severe acute Covid-19 infection were excluded. St. George's Respiratory Questionnaire (SGRQ), Euroquol-5D-5L (EQ-5D-5L), and the Short form 36 (SF-36) were distributed to assess HRQoL. 112 patients were included, 86 (76.8%) were female, median (IQR) age was 43 (32.0, 52.5) years with 126 (91, 180) days of symptoms. Patients suffered frequently from fatigue (81%), concentration difficulties (60%), and dyspnea (60%). Patients mostly stated impairment in performing usual activities and having pain/discomfort or anxiety out of the EQ-5D-5L. EQ index value and SGRQ activity score component were significantly lower in females. SF-36 scores showed remarkably lower scores in the physical health domain compared to the Swiss general population before and during the COVID-19 pandemic. Long-Covid syndrome has a substantial impact on HRQoL. Long-term surveillance of patients must provide clarity on the duration of impairments in physical and mental health.Trial registration: The study is registered on www.ClinicalTrials.gov , NCT04793269.


Subject(s)
COVID-19 , Quality of Life , Humans , Female , Male , Quality of Life/psychology , Post-Acute COVID-19 Syndrome , Pandemics , SARS-CoV-2 , Surveys and Questionnaires
2.
Diagnostics (Basel) ; 13(9)2023 May 03.
Article in English | MEDLINE | ID: covidwho-2316889

ABSTRACT

(1) Background: Lung tissue involvement is frequently observed in acute COVID-19. However, it is unclear whether CT findings at follow-up are associated with persisting respiratory symptoms after initial mild or moderate infection. (2) Methods: Chest CTs of patients with persisting respiratory symptoms referred to the post-COVID-19 outpatient clinic were reassessed for parenchymal changes, and their potential association was evaluated. (3) Results: A total of 53 patients (31 female) with a mean (SD) age of 46 (13) years were included, of whom 89% had mild COVID-19. Median (quartiles) time from infection to CT was 139 (86, 189) days. Respiratory symptoms were dyspnea (79%), cough (42%), and thoracic pain (64%). Furthermore, 30 of 53 CTs showed very discrete and two CTs showed medium parenchymal abnormalities. No severe findings were observed. Mosaic attenuation (40%), ground glass opacity (2%), and fibrotic-like changes (25%) were recorded. No evidence for an association between persisting respiratory symptoms and chest CT findings was found. (4) Conclusions: More than half of the patients with initially mild or moderate infection showed findings on chest CT at follow-up. Respiratory symptoms, however, were not related to any chest CT finding. We, therefore, do not suggest routine chest CT follow-up in this patient group if no other indications are given.

3.
Nat Commun ; 13(1): 6777, 2022 11 09.
Article in English | MEDLINE | ID: covidwho-2106404

ABSTRACT

Growing evidence links COVID-19 with acute and long-term neurological dysfunction. However, the pathophysiological mechanisms resulting in central nervous system involvement remain unclear, posing both diagnostic and therapeutic challenges. Here we show outcomes of a cross-sectional clinical study (NCT04472013) including clinical and imaging data and corresponding multidimensional characterization of immune mediators in the cerebrospinal fluid (CSF) and plasma of patients belonging to different Neuro-COVID severity classes. The most prominent signs of severe Neuro-COVID are blood-brain barrier (BBB) impairment, elevated microglia activation markers and a polyclonal B cell response targeting self-antigens and non-self-antigens. COVID-19 patients show decreased regional brain volumes associating with specific CSF parameters, however, COVID-19 patients characterized by plasma cytokine storm are presenting with a non-inflammatory CSF profile. Post-acute COVID-19 syndrome strongly associates with a distinctive set of CSF and plasma mediators. Collectively, we identify several potentially actionable targets to prevent or intervene with the neurological consequences of SARS-CoV-2 infection.


Subject(s)
COVID-19 , Humans , Cross-Sectional Studies , SARS-CoV-2 , Autoimmunity , Prospective Studies , Post-Acute COVID-19 Syndrome
4.
Front Neurol ; 13: 946644, 2022.
Article in English | MEDLINE | ID: covidwho-2022806

ABSTRACT

Background: Vaccination against SARS-CoV-2 has been conducted frequently to limit the pandemic but may rarely be associated with postvaccinal autoimmune reactions or disorders. Case presentation: We present a 35-year-old woman who developed fever, skin rash, and headache 2 days after the second SARS-CoV-2 vaccination with BNT162b2 (Pfizer/Biontech). Eight days later, she developed behavioral changes and severe recurrent seizures that led to sedation and intubation. Cerebral magnetic resonance imaging showed swelling in the (para-) hippocampal region predominantly on the left hemisphere and bilateral subcortical subinsular FLAIR hyperintensities. Cerebrospinal fluid analysis revealed a lymphocytic pleocytosis of 7 cells/µl and normal protein and immunoglobulin parameters. Common causes of encephalitis or encephalopathy such as viral infections, autoimmune encephalitis with well-characterized autoantibodies, paraneoplastic diseases, and intoxications were ruled out. We made a diagnosis of new-onset refractory status epilepticus (NORSE) due to seronegative autoimmune encephalitis. The neurological deficits improved after combined antiepileptic therapy and immunomodulatory treatment including high-dose methylprednisolone and plasma exchange. Conclusions: Although a causal relationship cannot be established, the onset of symptoms shortly after receiving the SARS-CoV-2 vaccine suggests a potential association between the vaccination and NORSE due to antibody-negative autoimmune encephalitis. After ruling out other etiologies, early immunomodulatory treatment may be considered in such cases.

5.
J Neuroinflammation ; 19(1): 19, 2022 Jan 20.
Article in English | MEDLINE | ID: covidwho-1643162

ABSTRACT

BACKGROUND: Comprehensive data on the cerebrospinal fluid (CSF) profile in patients with COVID-19 and neurological involvement from large-scale multicenter studies are missing so far. OBJECTIVE: To analyze systematically the CSF profile in COVID-19. METHODS: Retrospective analysis of 150 lumbar punctures in 127 patients with PCR-proven COVID-19 and neurological symptoms seen at 17 European university centers RESULTS: The most frequent pathological finding was blood-CSF barrier (BCB) dysfunction (median QAlb 11.4 [6.72-50.8]), which was present in 58/116 (50%) samples from patients without pre-/coexisting CNS diseases (group I). QAlb remained elevated > 14d (47.6%) and even > 30d (55.6%) after neurological onset. CSF total protein was elevated in 54/118 (45.8%) samples (median 65.35 mg/dl [45.3-240.4]) and strongly correlated with QAlb. The CSF white cell count (WCC) was increased in 14/128 (11%) samples (mostly lympho-monocytic; median 10 cells/µl, > 100 in only 4). An albuminocytological dissociation (ACD) was found in 43/115 (37.4%) samples. CSF L-lactate was increased in 26/109 (24%; median 3.04 mmol/l [2.2-4]). CSF-IgG was elevated in 50/100 (50%), but was of peripheral origin, since QIgG was normal in almost all cases, as were QIgA and QIgM. In 58/103 samples (56%) pattern 4 oligoclonal bands (OCB) compatible with systemic inflammation were present, while CSF-restricted OCB were found in only 2/103 (1.9%). SARS-CoV-2-CSF-PCR was negative in 76/76 samples. Routine CSF findings were normal in 35%. Cytokine levels were frequently elevated in the CSF (often associated with BCB dysfunction) and serum, partly remaining positive at high levels for weeks/months (939 tests). Of note, a positive SARS-CoV-2-IgG-antibody index (AI) was found in 2/19 (10.5%) patients which was associated with unusually high WCC in both of them and a strongly increased interleukin-6 (IL-6) index in one (not tested in the other). Anti-neuronal/anti-glial autoantibodies were mostly absent in the CSF and serum (1509 tests). In samples from patients with pre-/coexisting CNS disorders (group II [N = 19]; including multiple sclerosis, JC-virus-associated immune reconstitution inflammatory syndrome, HSV/VZV encephalitis/meningitis, CNS lymphoma, anti-Yo syndrome, subarachnoid hemorrhage), CSF findings were mostly representative of the respective disease. CONCLUSIONS: The CSF profile in COVID-19 with neurological symptoms is mainly characterized by BCB disruption in the absence of intrathecal inflammation, compatible with cerebrospinal endotheliopathy. Persistent BCB dysfunction and elevated cytokine levels may contribute to both acute symptoms and 'long COVID'. Direct infection of the CNS with SARS-CoV-2, if occurring at all, seems to be rare. Broad differential diagnostic considerations are recommended to avoid misinterpretation of treatable coexisting neurological disorders as complications of COVID-19.


Subject(s)
COVID-19/cerebrospinal fluid , Adult , Blood-Brain Barrier , COVID-19/complications , Cerebrospinal Fluid Proteins/cerebrospinal fluid , Cytokines/cerebrospinal fluid , Europe , Female , Humans , Immunity, Cellular , Immunoglobulin G/cerebrospinal fluid , Lactic Acid/cerebrospinal fluid , Leukocyte Count , Male , Middle Aged , Nervous System Diseases/cerebrospinal fluid , Nervous System Diseases/etiology , Oligoclonal Bands/cerebrospinal fluid , Retrospective Studies , Spinal Puncture , Post-Acute COVID-19 Syndrome
6.
BMC Infect Dis ; 21(1): 298, 2021 Mar 24.
Article in English | MEDLINE | ID: covidwho-1150393

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome virus 2 (SARS-CoV-2) is spreading globally and causes most frequently fever and respiratory symptoms, i.e. Coronavirus disease 2019 (COVID-19), however, distinct neurological syndromes associated with SARS-CoV-2 infection have been described. Among SARS-CoV-2-infections-associated neurological symptoms fatigue, headache, dizziness, impaired consciousness and anosmia/ageusia are most frequent, but less frequent neurological deficits such as seizures, Guillain-Barré syndrome or ataxia may also occur. CASE PRESENTATION: Herein we present a case of a 62-year-old man who developed a subacute cerebellar syndrome with limb-, truncal- and gait ataxia and scanning speech 1 day after clinical resolution of symptomatic SARS-CoV-2 infection of the upper airways. Apart from ataxia, there were no signs indicative of opsoclonus myoclonus ataxia syndrome or Miller Fisher syndrome. Cerebral magnetic resonance imaging showed mild cerebellar atrophy. SARS-CoV-2 infection of the cerebellum was excluded by normal cerebrospinal fluid cell counts and, most importantly, absence of SARS-CoV-2 RNA or intrathecal SARS-CoV-2-specific antibody production. Other causes of ataxia such as other viral infections, other autoimmune and/or paraneoplastic diseases or intoxication were ruled out. The neurological deficits improved rapidly after high-dose methylprednisolone therapy. CONCLUSIONS: The laboratory and clinical findings as well as the marked improvement after high-dose methylprednisolone therapy suggest a post-infectious, immune-mediated cause of ataxia. This report should make clinicians aware to consider SARS-CoV-2 infection as a potential cause of post-infectious neurological deficits with an atypical clinical presentation and to consider high-dose corticosteroid treatment in case that a post-infectious immune-mediated mechanism is assumed.


Subject(s)
COVID-19/complications , Cerebellar Ataxia/complications , Cerebrum/diagnostic imaging , Humans , Male , Middle Aged , RNA, Viral
7.
Stroke ; 51(12): 3719-3722, 2020 12.
Article in English | MEDLINE | ID: covidwho-1050419

ABSTRACT

BACKGROUND AND PURPOSE: Case series indicating cerebrovascular disorders in coronavirus disease 2019 (COVID-19) have been published. Comprehensive workups, including clinical characteristics, laboratory, electroencephalography, neuroimaging, and cerebrospinal fluid findings, are needed to understand the mechanisms. METHODS: We evaluated 32 consecutive critically ill patients with COVID-19 treated at a tertiary care center from March 9 to April 3, 2020, for concomitant severe central nervous system involvement. Patients identified underwent computed tomography, magnetic resonance imaging, electroencephalography, cerebrospinal fluid analysis, and autopsy in case of death. RESULTS: Of 32 critically ill patients with COVID-19, 8 (25%) had severe central nervous system involvement. Two presented with lacunar ischemic stroke in the early phase and 6 with prolonged impaired consciousness after termination of analgosedation. In all but one with delayed wake-up, neuroimaging or autopsy showed multiple cerebral microbleeds, in 3 with additional subarachnoid hemorrhage and in 2 with additional small ischemic lesions. In 3 patients, intracranial vessel wall sequence magnetic resonance imaging was performed for the first time to our knowledge. All showed contrast enhancement of vessel walls in large cerebral arteries, suggesting vascular wall pathologies with an inflammatory component. Reverse transcription-polymerase chain reactions for SARS-CoV-2 in cerebrospinal fluid were all negative. No intrathecal SARS-CoV-2-specific IgG synthesis was detectable. CONCLUSIONS: Different mechanisms of cerebrovascular disorders might be involved in COVID-19. Acute ischemic stroke might occur early. In a later phase, microinfarctions and vessel wall contrast enhancement occur, indicating small and large cerebral vessels involvement. Central nervous system disorders associated with COVID-19 may lead to long-term disabilities. Mechanisms should be urgently investigated to develop neuroprotective strategies.


Subject(s)
COVID-19/diagnostic imaging , Cerebral Arteries/diagnostic imaging , Cerebral Hemorrhage/diagnostic imaging , Cerebrovascular Disorders/diagnostic imaging , Ischemic Stroke/diagnostic imaging , Aged , Antibodies, Viral/cerebrospinal fluid , Brain Ischemia/diagnostic imaging , Brain Ischemia/etiology , COVID-19/cerebrospinal fluid , COVID-19/complications , COVID-19/physiopathology , COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing , Cerebral Hemorrhage/etiology , Cerebrospinal Fluid/immunology , Cerebrospinal Fluid/virology , Cerebrovascular Disorders/cerebrospinal fluid , Cerebrovascular Disorders/etiology , Cerebrovascular Disorders/physiopathology , Consciousness Disorders/etiology , Consciousness Disorders/physiopathology , Contrast Media , Critical Illness , Electroencephalography , Female , Humans , Ischemic Stroke/etiology , Magnetic Resonance Imaging , Male , Middle Aged , SARS-CoV-2 , Severity of Illness Index , Switzerland , Tertiary Care Centers , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL